题目内容
设
为奇函数,
为常数.
(1)求
的值;
(2)证明
在区间(1,+∞)内单调递增;
(3)若对于区间[3,4]上的每一个
的值,不等式
>
恒成立,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702350936.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702381265.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702381265.png)
(2)证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702412447.png)
(3)若对于区间[3,4]上的每一个
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702428249.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702412447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702459649.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702474337.png)
(1)
;(2)证明见解析;(3)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702490346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702506587.png)
试题分析:(1)利用奇函数的定义找关系求解出字母的值,注意对多解的取舍.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702521487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702537596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702552353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702568337.png)
(2)利用单调性的定义证明函数在给定区间上的单调性,关键要在自变量大小的前提下推导出函数值的大小.任取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702599767.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240547026303558.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702646601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702662400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702677432.png)
(3)将恒成立问题转化为函数的最值问题,用到了分离变量的思想.对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702693413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702724266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702740830.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702755810.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702771848.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702786789.png)
又易知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702771848.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702693413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702849976.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702864613.png)
试题解析:
解:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702521487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702537596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240547029112491.png)
检验
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702568337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702942369.png)
(2)由(1)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702958901.png)
证明:任取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702599767.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240547029893652.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702646601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702662400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702677432.png)
(3)对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702693413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702724266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702740830.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702755810.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702771848.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054703270653.png)
又易知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702771848.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702693413.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702849976.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054702864613.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目