题目内容
【题目】红队队员甲、乙、丙与蓝队队员,,进行围棋比赛,甲对,乙对,丙对各一盘.已知甲胜、乙胜、丙胜的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立,则红队至少两名队员获胜的概率是____________.
【答案】0.55
【解析】
根据题意,可知红队至少两名队员获胜的情况有:①甲和乙胜,丙败;②甲和丙胜,乙败;③乙和丙胜,甲败;④甲、乙、丙都胜;根据分步乘法的计数原理分别求出每种情况的概率,最后再利用分类加法的计数原理求出结果.
解:由题可知,各盘比赛结果相互独立,则红队至少两名队员获胜的情况有:
①甲和乙胜,丙败;②甲和丙胜,乙败;③乙和丙胜,甲败;④甲、乙、丙都胜;
而甲胜、乙胜、丙胜的概率分别为0.6,0.5,0.5,
则①甲和乙胜,丙败的概率为:,
②甲和丙胜,乙败的概率为:,
③乙和丙胜,甲败的概率为:,
④甲、乙、丙都胜的概率为:,
则红队至少两名队员获胜的概率为:.
故答案为:0.55.
【题目】某学校高三年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见下表.
百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等级 | A | B | C | D |
规定:A,B,C三级为合格等级,D为不合格等级为了解该校高三年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.
按照,,,,的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示
求n和频率分布直方图中的x,y的值,并估计该校高一年级学生成绩是合格等级的概率;
根据频率分布直方图,求成绩的中位数精确到;
在选取的样本中,从A,D两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是A等级的概率.
【题目】省环保厅对、、三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:
城 | 城 | 城 | |
优(个) | 28 | ||
良(个) | 32 | 30 |
已知在这180个数据中随机抽取一个,恰好抽到记录城市空气质量为优的数据的概率为0.2.
(1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在城中应抽取的数据的个数;
(2)已知, ,求在城中空气质量为优的天数大于空气质量为良的天数的概率.