题目内容
【题目】选修4-4:坐标系与参数方程
以平面直角坐标系的原点为极点, 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为(为参数),圆的极坐标方程为.
(1)求直线的普通方程与圆的直角坐标方程;
(2)设曲线与直线交于两点,若点的直角坐标为,求的值.
【答案】(1), (2)
【解析】试题分析:(1)根据加减消元法将直线的参数方程化为普通方程,根据将圆的极坐标方程化为直角坐标方程,(2)先化直线参数方程标准形式,代入圆的直角坐标方程,根据参数几何意义得,再根据韦达定理求值.
试题解析: 解:(1)直线的普通方程为,
,
所以
所以曲线的直角坐标方程为.
(2)点在直线上,且在圆内,由已知直线的参数方程是(为参数)
代入,
得,设两个实根为,则,即异号
所以.
练习册系列答案
相关题目