题目内容

【题目】已知幂函数为偶函数,且在区间内是单调递增函数.

(1)求函数的解析式;

(2)设函数,若对任意恒成立,求实数的取值范围.

【答案】(1);(2)

【解析】

1)由幂函数fxmZ)为偶函数,且在区间(0+∞)上是单调增函数.可得﹣m2+2m+30,且﹣m2+2m+3为偶数,解出即可得出.

2)分类参数,依题意,[x+12-1]max

1)∵幂函数fxmZ)为偶函数,且在区间(0+∞)上是单调增函数.

∴﹣m2+2m+30,且﹣m2+2m+3为偶数,

解得m1

fx)=x4

2)函数gx2x+cx2+2x

gx<0,化为x2+2x=(x+12-1

gx<0恒成立,

[x+12-1]max3,当且仅当x1时取等号.

∴实数c的取值范围是3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网