题目内容

【题目】如图,在四棱锥侧面底面底面为矩形 中点 .

(Ⅰ)求证: 平面

(Ⅱ)求直线与平面所成角的正弦值.

【答案】(Ⅰ)证明见解析;(Ⅱ) .

【解析】试题分析:(Ⅰ)设的交点为,连结,则的中点,由中点,利用三角形中位线定理可得,从而根据线面平行的判定定理可得平面;(Ⅱ)由勾股定理可得,根据线面垂直的性质定理得平面,故,再根据线面垂直的判定定理可得平面,故就是直线与平面所成的角,在直角中可得.

试题解析:

(Ⅰ)设的交点为连结.

因为为矩形所以的中点.

由已知中点所以.

平面 平面

所以平面.

(Ⅱ)在

所以

.

因为平面平面

平面平面

所以平面.

又因为 平面所以平面

就是直线与平面所成的角.

在直角

所以.

即直线与平面所成角的正弦值为.

【方法点晴】本题主要考查线面平行的判定定理、直线和平面成的角的定义及求法,属于难题. 证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网