题目内容
【题目】已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲、乙两个盒内各任取2个球。
(1)求取出的4个球中没有红球的概率;
(2)求取出的4个球中恰有1个红球的概率;
(3)设为取出的4个球中红球的个数,求的分布列和数学期望。
【答案】(1);(2);(3);
【解析】
试题(1)取出的4个球没有红球即均为黑色球包括从甲盒内取出的2个球均黑球且从乙盒内取出的2个球为黑球,这两个事件是相互独立的,根据相互独立事件同时发生的概率得到结果.
(2)取出的4个球中恰有1个红球有:从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球;从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球两种情况,它们是互斥的.
(3)ξ为取出的4个球中红球的个数,则ξ可能的取值为0,1,2,3.结合前两问的解法得到结果,由此得出分布列和期望.
试题解析:解:(1)设“取出的4个球中没有红球”为事件A。
则,
所以取出的4个球中没有红球的概率为。 4分
(2)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件B,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件C。由于事件B,C互斥,
且, 6分
。 8分
所以,取出的4个球中恰有1个红球的概率为
。 9分
(3)解:可能的取值为0,1,2,3。 10分
由(1)(2)知。
。
,
所以,的分布列为:
0 | 1 | 2 | 3 | |
P |
12分
所以的数字期望。 13分
【题目】由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为)
组别 | 步数分组 | 频数 |
2 | ||
10 | ||
2 | ||
(Ⅰ)写出的值,并回答这20名“微信运动”团队成员一天行走步数的中位数落在哪个组别;
(Ⅱ)记组步数数据的平均数与方差分别为,,组步数数据的平均数与方差分别为,,试分别比较与以,与的大小;(只需写出结论)
(Ⅲ)从上述两个组别的数据中任取2个数据,记这2个数据步数差的绝对值为,求的分布列和数学期望.