题目内容
【题目】已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.
(1)求抛物线的方程;
(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.
【答案】(1)(2)证明见解析
【解析】
(1)根据题意,设直线方程为,联立方程,根据抛物线的定义即可得到结论;
(2)根据题意,设的方程为,联立方程得,同理可得,进而得到,再利用点差法得直线的斜率,利用切线与导数的关系得直线的斜率,进而可得与互补.
(1)由题意设直线的方程为,令、,
联立,得
,
根据抛物线的定义得,
又,
故所求抛物线方程为.
(2)依题意,设,,
设的方程为,与联立消去得,
,同理
,直线的斜率=
切线的斜率,
由,即与互补.
练习册系列答案
相关题目
【题目】一次考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩如下表:
学生 | |||||
数学 | 89 | 91 | 93 | 95 | 97 |
物理 | 87 | 89 | 89 | 92 | 93 |
(Ⅰ)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定;
(Ⅱ)从以上5名同学中选2人参加一项活动,求选中的学生中至少有一个物理成绩高于90分的概率.