题目内容

8.已知数列{an}的前n和为Sn,且Sn满足:Sn=n2+n,n∈N+.等比数列{bn}满足:log2bn+$\frac{1}{2}{a_n}$=0.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=an•bn,求数列{cn}的前n项的和Tn

分析 (Ⅰ)通过Sn=n2+n,令n=1可得a1=2,令n≥2可得an=Sn-Sn-1=2n,进而可得an=2n;代入${log_2}{b_n}+\frac{1}{2}{a_n}=0$得${b_n}={(\frac{1}{2})^n}$;
(Ⅱ)通过an=2n、${b_n}={(\frac{1}{2})^n}$可得${c_n}={a_n}{b_n}=n{(\frac{1}{2})^{n-1}}$,利用错位相减法及等比数列的求和公式计算即得结论.

解答 解:(Ⅰ)当n=1时,S1=2,即a1=2,
当n≥2时,an=Sn-Sn-1=2n,
又a1=2=2×1,∴an=2n;
由${log_2}{b_n}+\frac{1}{2}{a_n}=0$得:${b_n}={(\frac{1}{2})^n}$;
(Ⅱ)∵an=2n,${b_n}={(\frac{1}{2})^n}$,
∴${c_n}={a_n}{b_n}=n{(\frac{1}{2})^{n-1}}$,
∴${T_n}=1×{(\frac{1}{2})^0}+2×{(\frac{1}{2})^1}+3×{(\frac{1}{2})^2}+$…$+(n-1)×{(\frac{1}{2})^{n-2}}+n×{(\frac{1}{2})^{n-1}}$,…(1)
$\frac{1}{2}{T_n}=1×{(\frac{1}{2})^1}+2×{(\frac{1}{2})^2}+$…$+(n-1)×{(\frac{1}{2})^{n-1}}+n×{(\frac{1}{2})^n}$,…(2)
(1)-(2)得:$\frac{1}{2}{T_n}=1+{(\frac{1}{2})^1}+{(\frac{1}{2})^2}+$…$+{(\frac{1}{2})^{n-1}}-n×{(\frac{1}{2})^n}=\frac{{1-{{(\frac{1}{2})}^n}}}{{1-\frac{1}{2}}}-n×{(\frac{1}{2})^n}$,
∴${T_n}=4-{(\frac{1}{2})^{n-1}}(n+2)$.

点评 本题考查求数列的通项及求和,考查运算求解能力,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网