题目内容
如图,在平行四边形ABCD中,E为CD上一点,DE∶EC=2∶3,连接AE,BE,BD,且AE,BD交于点F,则S△DEF∶S△EBF∶S△ABF=( )
A.4∶10∶25 | B.4∶9∶25 |
C.2∶3∶5 | D.2∶5∶25 |
A
由题意可知,△DEF与△BAF相似,且DE∶AB=2∶5,所以△DEF与△ABF的面积之比为4∶25.△DEF与△BEF的底分别是DF,BF,二者高相等,又DF∶BF=2∶5,所以△DEF与△BEF的面积之比为2∶5.综上S△DEF∶S△EBF∶S△ABF=4∶10∶25,故选A.
练习册系列答案
相关题目