题目内容

【题目】如图①,四边形中,的中点.沿折起到的位置,如图②.

)求证:平面平面

)若,求与平面所成角的正弦值.

【答案】)证明见解析;(.

【解析】

)在图①中,,根据翻折的性质得出在图②中,,利用线面垂直的判定定理得出平面,再利用面面垂直的判定定理可证得平面平面

)以点为坐标原点,所在直线分别为轴建立空间直角坐标系,计算出平面的一个法向量,利用空间向量法可求得与平面所成角的正弦值.

)因为四边形中,的中点,

,则四边形为矩形,所以,即.

在图②中,

又因为,所以平面.

又因为平面,所以平面平面.

)由

,以点为坐标原点,所在直线分别为轴建立空间直角坐标系

,得

.

设平面的法向量为

,即,令,得,可得

,设直线与平面所成角为

所以.

因此,直线与平面所成角的正弦值为.

练习册系列答案
相关题目

【题目】一场突如其来的新冠肺炎疫情在全国蔓延,在党中央的坚强领导和统一指挥下,全国人民众志成城、团结一心,共抗疫情。每天测量体温也就成为了所有人的一项责任,一般认为成年人腋下温度(单位:℃)平均在36℃~37℃之间即为正常体温,超过37.1℃即为发热。发热状态下,不同体温可分成以下三种发热类型:低热:;高热:;超高热(有生命危险):.

某位患者因发热,虽排除肺炎,但也于12日至26日住院治疗. 医生根据病情变化,从14日开始,以3天为一个疗程,分别用三种不同的抗生素为该患者进行消炎退热. 住院期间,患者每天上午8:00服药,护士每天下午16:00为患者测量腋下体温记录如下:

抗生素使用情况

没有使用

使用“抗生素A”治疗

使用“抗生素B”治疗

日期

12

13

14

15

16

17

18

19

体温(℃)

38.7

39.4

39.7

40.1

39.9

39.2

38.9

39.0

抗生素使用情况

使用“抗生素C”治疗

没有使用

日期

20

21

22

23

24

25

26

体温(℃)

38.4

38.0

37.6

37.1

36.8

36.6

36.3

1)请你计算住院期间该患者体温不低于39℃的各天体温平均值;

2)在18日—22日期间,医生会随机选取3天在测量体温的同时为该患者进行某一特殊项目“项目”的检查,求至少两天在高热体温下做“项目”检查的概率;

3)抗生素治疗一般在服药后2-8个小时就能出现血液浓度的高峰,开始杀灭细菌,达到消炎退热效果.假设三种抗生素治疗效果相互独立,请依据表中数据,判断哪种抗生素治疗效果最佳,并说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网