题目内容

【题目】已知两点,线段的直径

1)求的方程;

2)若经过点的直线截得的弦长为8,求此直线的方程.

【答案】(1) ;(2) .

【解析】

(1) 根据题意,由的坐标可得线段的中点,即的坐标,求出的长,即可得圆的半径,由圆的标准方程即可得答案;

(2)由垂径定理可知圆心到直线的距离, 设直线的方程为,结合点到直线的距离公式,可得的值,即可得出结论,注意讨论斜率不存在的情况.

(1) 根据题意,点点,,则线段的中点为,的坐标为, 是以线段为直径的圈,则其半径,的方程为.

(2)根据勾股定理可知圆心到直线的距离,

若直线斜率不存在时, 符合题意;

若直线斜率存在,设直线的方程为,

,,解得,

所以直线的方程为.

综上直线的方程为: .

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网