题目内容

14.设O是平面上一定点,A,B,C是平面上不共线的三点,动点P满足$\overrightarrow{OP}=\overrightarrow{OA}+λ(\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|•cosB}}+\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|•cosC}})$,λ∈[0,+∞),则点P的轨迹经过△ABC的(  )
A.外心B.内心C.重心D.垂心

分析 可先根据数量积为零得出$\overrightarrow{BC}$与λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$)垂直,可得点P在BC的高线上,从而得到结论.

解答 解:∵$\overrightarrow{OP}=\overrightarrow{OA}+λ(\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|•cosB}}+\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|•cosC}})$,
∴$\overrightarrow{AP}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$).
又∵$\overrightarrow{BC}$•($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$)=-|$\overrightarrow{BC}$|+|$\overrightarrow{BC}$|=0
∴$\overrightarrow{BC}$与λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$)垂直,
即$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,
∴点P在BC的高线上,即P的轨迹过△ABC的垂心
故选:D.

点评 本题主要考查了向量在几何中的应用、空间向量的加减法、轨迹方程、以及三角形的五心等知识,解答关键是得出$\overrightarrow{BC}$与λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$)垂直,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网