题目内容

已知P是椭圆
x2
16
+
y2
9
=1
上的点,F1、F2分别是椭圆的左、右焦点,若∠F1PF2=60°,则△F1PF2的面积为______.
∵a=4,b=3
∴c=
7

设|PF1|=t1,|PF2|=t2
则由椭圆的定义可得:t1+t2=8①
在△F1PF2中∠F1PF2=60°,
所以t12+t22-2t1t2•cos60°=28②,
由①2-②得t1t2=12,
所以SF1PF2=
1
2
t1t2•sin60°=
1
2
×12×
3
2
=3
3

故答案为3
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网