题目内容

【题目】一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1 , V2 , V3 , V4 , 上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有(

A.V1<V2<V4<V3
B.V1<V3<V2<V4
C.V2<V1<V3<V4
D.V2<V3<V1<V4

【答案】C
【解析】解:由题意以及三视图可知,该几何体从上到下由:圆台、圆柱、正四棱柱、正四棱台组成,
体积分别记为V1= =
V2=12×π×2=2π,
V3=2×2×2=8
V4= =

∴V2<V1<V3<V4
故选C.
【考点精析】解答此题的关键在于理解由三视图求面积、体积的相关知识,掌握求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网