题目内容
【题目】已知中心在原点的双曲线的右焦点为,右顶点为.
()求双曲线的方程;
()若直线与双曲线交于不同的两点,,且线段的垂直平分线过点,求实数的取值范围.
【答案】(1);(2).
【解析】试题分析:(1)由双曲线的右焦点为,右顶点为求出和,进而根据求得,则双曲线方程可得;(2)把直线方程与双曲线方程联立,消去,利用判别式大于求得和的不等式关系,设的中点为,根据韦达定理表示出和,根据,可知的斜率为,进而求得和的关系,最后综合可求得的范围.
试题解析:()设双曲线方程为.
由已知得,,,
∴.
故双曲线的方程为.
()联立,
整理得.
∵直线与双曲线有两个不同的交点,
∴,
可得.()
设、,的中点为.
则,,.
由题意,,∴.
整理得.()
将()代入(),得,
∴或.
又,即.
∴的取值范围是.
【方法点晴】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系,属于难题. 用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程或 ;③找关系:根据已知条件,建立关于、、的方程组;④得方程:解方程组,将解代入所设方程,即为所求.
练习册系列答案
相关题目