题目内容
【题目】已知函数f(x)=(2﹣a)lnx+ +2ax(a∈R).
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a<0时,求f(x)单调区间;
(Ⅲ)若对任意a∈(﹣3,﹣2)及x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求实数m的取值范围.
【答案】解:(Ⅰ)依题意知f(x)的定义域为(0,+∞),
当a=0时,f(x)=2lnx+ ,f′(x)= ﹣ = ,
令f′(x)=0,解得x= ,
当0<x< 时,f′(x)<0;
当x≥ 时,f′(x)>0
又∵f( )=2﹣ln2
∴f(x)的极小值为2﹣2ln2,无极大值.
(Ⅱ)f′(x)= ﹣ +2a=
当a<﹣2时,﹣ < ,
令f′(x)<0 得 0<x<﹣ 或x> ,
令f′(x)>0 得﹣ <x< ;
当﹣2<a<0时,得﹣ > ,
令f′(x)<0 得 0<x< 或x>﹣ ,
令f′(x)>0 得 <x<﹣ ;
当a=﹣2时,f′(x)=﹣ ≤0,
综上所述,当a<﹣2时f(x),的递减区间为(0,﹣ )和( ,+∞),递增区间为(﹣ , );
当a=﹣2时,f(x)在(0,+∞)单调递减;
当﹣2<a<0时,f(x)的递减区间为(0, )和(﹣ ,+∞),递增区间为( ,﹣ ).
(Ⅲ)由(Ⅱ)可知,当a∈(﹣3,﹣2)时,f(x)在区间[1,3]上单调递减,
当x=1时,f(x)取最大值;
当x=3时,f(x)取最小值;
|f(x1)﹣f(x2)|≤f(1)﹣f(3)=(1+2a)﹣[(2﹣a)ln3+ +6a]= ﹣4a+(a﹣2)ln3,
∵(m+ln3)a﹣ln3>|f(x1)﹣f(x2)|恒成立,
∴(m+ln3)a﹣2ln3> ﹣4a+(a﹣2)ln3
整理得ma> ﹣4a,
∵a<0,∴m< ﹣4恒成立,
∵﹣3<a<﹣2,∴﹣ < ﹣4<﹣ ,
∴m≤﹣
【解析】(Ⅰ)当a=0时,f(x)=2lnx+ ,求导,令f′(x)=0,解方程,分析导数的变化情况,确定函数的极值;(Ⅱ)当a<0时,求导,对导数因式分解,比较两根的大小,确定函数f(x)单调区间;(Ⅲ)若对任意a∈(﹣3,﹣2)及x1 , x2∈[1,3],恒有(m+ln3)a﹣2ln3>|f(x1)﹣f(x2)|成立,求函数f(x)的最大值和最小值,解不等式,可求实数m的取值范围.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的极值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.