题目内容
【题目】设△ABC的内角A、B、C的对应边分别为a、b、c,若向量 =(a﹣b,1)与向量 =(a﹣c,2)共线,且∠A=120°.
(1)a:b:c;
(2)若△ABC外接圆的半径为14,求△ABC的面积.
【答案】
(1)解:∵向量 与向量 共线,可得: ,
∴2b=a+c,
设a=b﹣d,c=b+d,由已知,cosA=﹣ ,即 =﹣ ,
d=﹣ ,从而a= ,c= ,
∴a:b:c=7:5:3
(2)解:由正弦定理 =2R,得a=2RsinA=2×14× =14 ,
由(1)设a=7k,即k=2 ,
所以b=5k=10 ,c=2k=6 ,
所以S△ABC= bcsinA= ×10 ×6 × =45 ,
所以△ABC的面积为45
【解析】(1)利用向量共线的性质可得2b=a+c,设a=b﹣d,c=b+d,由余弦定理解得d=﹣ ,进而可得a= ,c= ,从而可求a:b:c.(2)由正弦定理可求a,由(1)可求b,c的值,利用三角形面积公式即可计算得解.
【考点精析】关于本题考查的正弦定理的定义,需要了解正弦定理:才能得出正确答案.
【题目】某技术公司新开发了A,B两种新产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:
测试指标 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
产品A | 8 | 12 | 40 | 32 | 8 |
产品B | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计产品A,产品B为正品的概率;
(2)生产一件产品A,若是正品可盈利80元,次品则亏损10元;生产一件产品B,若是正品可盈利100元,次品则亏损20元;在(1)的前提下.记X为生产一件产品A和一件产品B所得的总利润,求随机变量X的分布列和数学期望.