题目内容
【题目】已知函数f(x)满足f(x+y)=f(x)·f(y)且f(1)=.
(1)当n∈N*时,求f(n)的表达式;
(2)设an=n·f(n),n∈N*,求证:a1+a2+a3+…+an<2;
(3)设bn=(9-n) ,n∈N*,Sn为{bn}的前n项和,当Sn最大时,求n的值.
【答案】(1) ;(2)证明见解析;(3)当n=8或n=9时,Sn取得最大值.
【解析】试题分析:
(1)由题意结合递推关系可得:{f(n)}是首项为,公比为的等比数列,则.
(2)由题意可得: ,错位相减有: ,则有a1+a2+a3+…+an<2;
(3)结合(1)的结论可得: ,则当n=9时,bn=0;当n>9时,bn<0.故当n=8或n=9时,Sn取得最大值.
试题解析:
(1)解 令x=n,y=1,
得f(n+1)=f(n)·f(1)=f(n),
∴{f(n)}是首项为,公比为的等比数列,
∴f(n)=()n.
(2)证明 设Tn为{an}的前n项和,
∵an=n·f(n)=n·()n,
∴Tn=+2×()2+3×()3+…+n×()n,
Tn=()2+2×()3+3×()4+…+(n-1)×()n+n×()n+1,
两式相减得Tn=+()2+()3+…+()n-n×()n+1,
=1-()n-n×()n+1,
∴Tn=2-()n-1-n×()n<2.
(3)解 ∵f(n)=()n,
∴bn=(9-n)
=(9-n)=.
∴当n≤8时,bn>0;
当n=9时,bn=0;
当n>9时,bn<0.
∴当n=8或n=9时,Sn取得最大值.
练习册系列答案
相关题目