题目内容
【题目】给出集合.
(1)若,求证:函数;
(2)由(1)分析可知, 是周期函数且是奇函数,于是张三同学得出两个命
题:命题甲:集合中的元素都是周期函数.命题乙:集合中的元素都是奇函数. 请对此
给出判断,如果正确,请证明;如果不正确,请举反例;
(3)若,数列满足: ,且 ,数列的前项
和为,试问是否存在实数、,使得任意的,都有成立,若
存在,求出、的取值范围,若不存在,说明理由.
【答案】(1)见解析(2)命题甲正确(3)
【解析】试题分析:
(1)原问题即,结合两角和差正余弦公式整理变形即可证得题中的结论;
(2)由题意可得:命题甲正确. 集合中的元素都是周期为6的周期函数.命题乙不正确.如是奇函数; 不是奇函数.
(3)由题意可得,假设存在实数满足题设,据此计算可得,即数列是周期为的周期数列,且前6项依次为,据此可知,则满足题意时只需即可.
试题解析:
(1)转化证明
左边
右边
(2)命题甲正确. 集合中的元素都是周期为6的周期函数.
验证即可
命题乙不正确.集合中的元素不都是奇函数.
如是奇函数; 不是奇函数.
(3) ,则
假设存在实数满足题设,则
所以数列是周期为的周期数列,且前6项依次为
当, 时,
当 时,
当 时,
当 时,
综上
要使对任意的,都有恒成立,
只要即可.
练习册系列答案
相关题目