题目内容

【题目】已知圆C1的参数方程为 (φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为

(1)将圆C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标方程;

(2)圆C1、C2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.

【答案】(1)1;(2)

【解析】试题分析:(Ⅰ)对于曲线C1利用三角函数的平方关系式sin2φ+cos2φ=1即可;对于曲线C2利用极坐标与直角坐标的互化公式即可化简;
(Ⅱ)先求出两圆的圆心距,与两圆的半径和差进行比较即可判断出两圆的位置关系;再将两圆的方程联立求出其交点坐标,利用两点间的距离公式即可.

试题解析:

(1)x2y2=1,

ρ=2cos(θ)=cos θsin θ,∴ρ2ρcos θρsin θ.

x2y2xy=0,即(x)2+(y)2=1.

(2)圆心距d=1<2,得两圆相交.

得,A(1,0),B(-,-),

∴|AB|=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网