题目内容


已知椭圆C:上动点到定点,其中的距离的最小值为1.(1)请确定M点的坐标(2)试问是否存在经过M点的直线,使与椭圆C的两个交点A、B满足条件(O为原点),若存在,求出的方程,若不存在请说是理由。
(1,0);这样的直线不存在。
【思维分析】此题解题关键是由条件从而将条件转化点的坐标运算再结合韦达定理解答。
解析:设,由由于故当时,的最小值为此时,当时,取得最小值为解得不合题意舍去。综上所知当是满足题意此时M的坐标为(1,0)。
(2)由题意知条件等价于,当的斜率不存在时,与C的交点为,此时,设的方程为,代入椭圆方程整理得,由于点M在椭圆内部故恒成立,由,据韦达定理得代入上式得不合题意。综上知这样的直线不存在。
【知识点归类点拔】在解题过程中要注意将在向量给出的条件转化向量的坐标运算,从而与两交点的坐标联系起来才自然应用韦达定理建立起关系式。此题解答具有很强的示范性,请同学们认真体会、融会贯通。
 
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网