题目内容

如图,平面直角坐标系中,为两等腰直角三角形,C(a,0)(a>0).设的外接圆圆心分别为,

(Ⅰ)若⊙M与直线CD相切,求直线CD的方程;
(Ⅱ)若直线AB截⊙N所得弦长为4,求⊙N的标准方程;
(Ⅲ)是否存在这样的⊙N,使得⊙N上有且只有三个点到直线AB的距离为,若存在,求此时⊙N的标准方程;若不存在,说明理由.
(Ⅰ)
(Ⅱ)
(Ⅲ)存在.
由(Ⅱ)知,圆心N到直线AB距离为(定值),且ABCD始终成立,
∴当且仅当圆N半径,即a=4时,⊙N上有且只有三个点到直线AB的距离为 .       
此时, ⊙N的标准方程为. 
(Ⅰ)圆心
∴圆方程为
直线CD方程为.           
∵⊙M与直线CD相切,
∴圆心M到直线CD的距离d=,         
化简得: (舍去负值).
∴直线CD的方程为.          
(Ⅱ)直线AB方程为:,圆心N .
∴圆心N到直线AB距离为.  
∵直线AB截⊙N的所得弦长为4,

a(舍去负值) .                      
∴⊙N的标准方程为.   
(Ⅲ)存在.
由(Ⅱ)知,圆心N到直线AB距离为(定值),且ABCD始终成立,
∴当且仅当圆N半径,即a=4时,⊙N上有且只有三个点到直线AB的距离为 .       
此时, ⊙N的标准方程为.  
练习册系列答案
相关题目


违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网