题目内容
【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.
【答案】(1);(2).
【解析】
分析:(I)由题意结合几何关系可求得.则椭圆的方程为.
(II)设点P的坐标为,点M的坐标为 ,由题意可得.
易知直线的方程为,由方程组可得.由方程组可得.结合,可得,或.经检验的值为.
详解:(I)设椭圆的焦距为2c,由已知得,又由,可得.由,从而.
所以,椭圆的方程为.
(II)设点P的坐标为,点M的坐标为,由题意,,
点的坐标为.由的面积是面积的2倍,可得,
从而,即.
易知直线的方程为,由方程组消去y,可得.由方程组消去,可得.由,可得,两边平方,整理得,解得,或.
当时,,不合题意,舍去;当时,,,符合题意.
所以,的值为.
练习册系列答案
相关题目