题目内容

自圆O外一点P引切线与圆切于点A,M为PA的中点,过M引割线交圆于B,C两点.求证:∠MCP=∠MPB.
证明 ∵PA与圆相切于A,
∴MA2=MB·MC,
∵M为PA中点,∴PM=MA,
∴PM2=MB·MC,∴=.
∵∠BMP=∠PMC,∴△BMP∽△PMC,
∴∠MCP=∠MPB.
证明 ∵PA与圆相切于A,
∴MA2=MB·MC,
∵M为PA中点,∴PM=MA,
∴PM2=MB·MC,∴=.
∵∠BMP=∠PMC,∴△BMP∽△PMC,
∴∠MCP=∠MPB.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网