题目内容
【题目】已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O和点A,与y轴交于点O和点B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线y=-2x+4与圆C交于点M,N,若OM=ON,求圆C的方程.
【答案】(1)证明见解析(2)圆C的方程为(x-2)2+(y-1)2=5
【解析】
(1)先求出圆C的方程(x-t)2+=t2+,再求出|OA|,|0B|的长,即得△OAB的面积为定值;(2)根据t得到t=2或t=-2,再对t分类讨论得到圆C的方程.
(1)证明:因为圆C过原点O,所以OC2=t2+.
设圆C的方程是(x-t)2+=t2+,
令x=0,得y1=0,y2=;
令y=0,得x1=0,x2=2t,
所以S△OAB=OA·OB=×|2t|×||=4,
即△OAB的面积为定值.
(2)因为OM=ON,CM=CN,所以OC垂直平分线段MN.
因为kMN=-2,所以kOC=.
所以t,解得t=2或t=-2.
当t=2时,圆心C的坐标为(2,1),OC=,
此时,圆心C到直线y=-2x+4的距离d=<,圆C与直线y=-2x+4相交于两点.
符合题意,此时,圆的方程为(x-2)2+(y-1)2=5.
当t=-2时,圆心C的坐标为(-2,-1),OC=,此时C到直线y=-2x+4的距离d=.圆C与直线y=-2x+4不相交,
所以t=-2不符合题意,舍去.
所以圆C的方程为(x-2)2+(y-1)2=5.
练习册系列答案
相关题目