题目内容

【题目】从某校随机抽取200名学生,获得了他们一周课外阅读时间(单位:h)的数据,整理得到数据的频数分布表和频率分布直方图(如图).

 

 

 

1

[0,2)

12

2

[2,4)

16

3

[4,6)

34

4

[6,8)

44

 

 

 

 

5

[8,10)

50

6

[10,12)

24

7

[12,14)

12

8

[14,16)

4

9

[16,18]

4

合计

200

(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12 h的概率;

(2)求频率分布直方图中的a,b的值;

(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.

【答案】10.920.12534

【解析】试题分析: (1)求出对应情况下出现的频数,频数与总数之比为频率;(2)根据频数求出频率,频率乘以组距得出a,b的值;(3)结合频率分布直方图根据题意算出平均数.

试题解析:

(1)由频率分布表可知该周课外阅读时间不少于12 h的频数为12+4+4=20,故可估计该周课外阅读时间少于12 h的概率为1-=0.9.

(2)由频率分布表可知数据在[4,6)的频数为34,故这一组的频率为0.17,a=0.085,数据在[8,10)的频数为50,故这一组的频率为0.25,b=0.125.

(3)数据的平均数为(12×1+3×16+5×34+7×44+9×50+11×24+13×12+15×4+17×4)=7.68(h),故样本中的200名学生该周课外阅读时间的平均数在第四组.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网