题目内容
【题目】函数f(x)= 为R的单调函数,则实数a的取值范围是( )
A.(0,+∞)
B.[﹣1,0)
C.(﹣2,0)
D.(﹣∞,﹣2)
【答案】B
【解析】解:f′(x)= ;
(1)若a>0,x≥0时,f′(x)≥0,即函数f(x)在[0,+∞)上单调递增,且ax2+1≥1;要使f(x)在R上为单调函数,则x<0时,a(a+2)>0,
∵a>0,∴解得a>0,并且(a+2)eax<a+2,
∴a+2≤1,解得a≤﹣1,不符合a>0,
∴这种情况不存在;
(2)若a<0,x≥0时,f′(x)≤0,即函数f(x)在[0,+∞)上单调递减,且ax2+1≤1;要使f(x)在R上为单调函数,则x<0时,a(a+2)<0,解得﹣2<a<0,并且(a+2)eax>a+2,
∴a+2≥1,解得a≥﹣1,∴﹣1≤a<0;
综上得a的取值范围为[﹣1,0).
故选:B.
【考点精析】根据题目的已知条件,利用函数单调性的判断方法的相关知识可以得到问题的答案,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较.
【题目】某百货公司1~6月份的销售量与利润的统计数据如表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售量x/万件 | 10 | 11 | 13 | 12 | 8 | 6 |
利润y/万元 | 22 | 25 | 29 | 26 | 16 | 12 |
(1)根据2~5月份的统计数据,求出y关于x的回归直线方程x+;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差均不超过2万元,则认为得到的回归直线方程是理想的,试问所得回归直线方程是否理想?
【题目】某城市城镇化改革过程中最近五年居民生活水平用水量逐年上升,下表是2011至2015年的统计数据:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
居民生活用水量(万吨) | 236 | 246 | 257 | 276 | 286 |
(1)利用所给数据求年居民生活用水量与年份之间的回归直线方程y=bx+a;
(2)根据改革方案,预计在2020年底城镇化改革结束,到时候居民的生活用水量将趋于稳定,预计该城市2023年的居民生活用水量.
参考公式: .