题目内容

如图,F1(-c,0),F2(c,0)分别是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左,右焦点,过点F1作x轴的垂线交双曲线的上半部分于点P,过点F2作直线PF2的垂线交直线l:x=
a2
c
于点Q,若点Q的坐标为(1,-4).
(Ⅰ)求双曲线C的方程;
(Ⅱ)求∠F1PF2的角平分线所在直线的方程.
(Ⅰ)将点P(-c,y1)(y1>0)代入
x2
a2
-
y2
b2
=1得y1=
b2
a

∴P(-c,
b2
a

∵点Q的坐标是(1,-4),PF2⊥QF2
b2
a
-0
-c-c
×
0+4
c-1
=-1
a2
c
=1,c2=a2-b2
∴a=2,c=4,b=
c2-a2
=2
3

∴双曲线C的方程为
x2
4
-
y2
12
=1

(Ⅱ)由(Ⅰ)知,F1(-4,0),F2(4,0),P(-4,6),则|PF1|=6,|PF2|=10
设∠F1PF2的角平分线所在直线的方程与x轴交于M(x,0),则由角平分线的性质可得
10
6
=
4-x
x+4

∴x=-1,∴M(-1,0)
∴∠F1PF2的角平分线所在直线的方程为
y-0
6-0
=
x+1
-4+1
,即2x+y+2=0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网