题目内容
如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,
M为AP的中点.
(Ⅰ)求证:DM∥平面PCB;
(Ⅱ)求直线AD与PB所成角;
(Ⅲ)求三棱锥P-MBD的体积.
M为AP的中点.
(Ⅰ)求证:DM∥平面PCB;
(Ⅱ)求直线AD与PB所成角;
(Ⅲ)求三棱锥P-MBD的体积.
(Ⅰ)证明见解析(Ⅱ)(Ⅲ)
(I)取PB的中点F,联结MF、CF,∵M、F分别为PA、PB的中点.
∴MF∥AB,且MF=AB.
∵四边形ABCD是直角梯形,AB∥CD且AB=2CD,
∴MF∥CD且MF=CD.
∴四边形CDFM是平行四边形.
∴DM∥CF.
∵CF平面PCB,
∴DM∥平面PCB. 4分
(Ⅱ)取AD的中点G,连结PG、GB、BD.
∵PA=PD, ∴PG⊥AD.
∵AB=AD,且∠DAB=60°,
∴△ABD是正三角形,BG⊥AD.
∴AD⊥平面PGB.
∴AD⊥PB. 8分
(Ⅲ)VP-MBD=VB-PMD 10分
VB-PMD =××××= 14分
∴MF∥AB,且MF=AB.
∵四边形ABCD是直角梯形,AB∥CD且AB=2CD,
∴MF∥CD且MF=CD.
∴四边形CDFM是平行四边形.
∴DM∥CF.
∵CF平面PCB,
∴DM∥平面PCB. 4分
(Ⅱ)取AD的中点G,连结PG、GB、BD.
∵PA=PD, ∴PG⊥AD.
∵AB=AD,且∠DAB=60°,
∴△ABD是正三角形,BG⊥AD.
∴AD⊥平面PGB.
∴AD⊥PB. 8分
(Ⅲ)VP-MBD=VB-PMD 10分
VB-PMD =××××= 14分
练习册系列答案
相关题目