题目内容

如图,直四棱柱ABCD-A1B1C1D1的底面是
梯形,AB∥CD,AD⊥DC,CD=2,DD1=AB=1,P、Q分别是CC1、C1D1的中点。点P到直线
AD1的距离为
⑴求证:AC∥平面BPQ
⑵求二面角B-PQ-D的大小
(Ⅰ)证明见解析(Ⅱ)arctan
⑴连接CD1∵P、Q分别是CC1、C1D1的        
中点。∴CD1∥PQ 故CD1∥平面BPQ
又D1Q=AB=1,D1Q∥AB,
得平行四边形ABQD1,故AD1∥平面BPQ
∴平面ACD1∥平面BPQ
∴AC∥平面BPQ        (4分)
⑵设DD1中点为E,连EF,则PE∥CD
∵CD⊥AD,CD⊥DD1  ∴CD⊥平面ADD1
∴PE⊥平面ADD1
过E作EF⊥AD1于F,连PF。则PF⊥AD1,PF为点P到直线AD1的距离
PF=,PE="2 " ∴EF= 又D1E=,D1D=1,∴AD="1    "
取CD中点G,连BG,由AB∥DG,AB=DG得GB∥AD。∵AD⊥DC,AD⊥DD1∴AD⊥平面DCC1D1,则BG⊥平面DCC1D1
过G作GH⊥PQ于H,连BH,则BH⊥PQ,故∠BHG是二面角B-PQ-D的平面角。                                                    
由△GHQ∽△QC1P得GH=,又BG=1,得tan∠BHG=
∴二面角B-PQ-D大小为arctan
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网