题目内容
【题目】设函数(且)是定义域为的奇函数.
(1)若,试求不等式的解集;
(2)若,且,求在上的最小值.
【答案】(Ⅰ)
(Ⅱ)-2
【解析】
首先利用奇函数求得的值.(1)根据求得,由此求得函数是单调递增函数,再根据函数的奇偶性和单调性求得不等式的解集.(2)利用求得的值.由此求得函数的解析式.在利用换元法以及配方法求得函数在给定区间上的最小值.
∵f(x)是定义域为R的奇函数,∴f(0)=0,∴k-1=0,∴k=1.
(1)∵f(1)>0,∴a->0,又a>0且a≠1,∴a>1.∵k=1,∴f(x)=ax-a-x,当a>1时,y=ax和y=-a-x在R上均为增函数,∴f(x)在R上为增函数,原不等式可化为f(x2+2x)>f(4-x),∴x2+2x>4-x,即x2+3x-4>0,∴x>1或x<-4,∴不等式的解集为{x|x>1或x<-4}.
(2)∵f(1)=,∴a-=,即2a2-3a-2=0.∴a=2或a=- (舍去),∴g(x)=22x+2-2x-4(2x-2-x)=(2x-2-x)2-4(2x-2-x)+2,令t=h(x)=2x-2-x(x≥1),则g(t)=t2-4t+2.∵t=h(x)在[1,+∞)上为增函数(由(1)可知),∴h(x)≥h(1)=,即t≥,g(t)=t2-4t+2=(t-2)2-2,t∈.∴当t=2时,g(t)取得最小值-2,即g(x)取得最小值-2,此时x=log2(1+),故当x=log2(1+)时,g(x)有最小值-2.
练习册系列答案
相关题目