题目内容

已知关于x的方程x2+mx+m+n=0的两根分别为椭圆和双曲线的离心率.记分别以m、n为横纵坐标的点P(m,n)表示的平面区域为D,若函数y=loga(x+3)(a>1)的图象上存在区域D上的点,则实数a的取值范围为(  )
A.a>2B.a≥2C.1<a<2D.1<a≤2
构造函数f(x)=x2+mx+m+n
∵关于x的方程x2+mx+m+n=0的两根分别为椭圆和双曲线的离心率
∴方程x2+mx+m+n=0的两根,一根属于(0,1),另一根属于(1,+∞)
f(0)>0
f(1)<0
,∴
m+n>0
1+2m+n<0

∵直线m+n=0,1+2m+n=0的交点坐标为(-1,1)
∴要使函数y=loga(x+3)(a>1)的图象上存在区域D上的点,则必须满足1<loga(-1+3)
∴loga2>1=logaa,
∵a>1
∴1<a<2
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网