题目内容

17.在△ABC中,若$\frac{a}{cosA}=\frac{b}{cosB}=\frac{c}{cosC}$,则△ABC的形状是(  )
A.等边三角形B.直角三角形C.等腰直角三角形D.钝角三角形

分析 根据正弦定理化简$\frac{a}{cosA}=\frac{b}{cosB}=\frac{c}{cosC}$,利用两角差的正弦公式化简,利用内角的范围好特殊角的正弦值判断出A、B、C的关系,即可判断出△ABC的形状.

解答 解:由题意得,$\frac{a}{cosA}=\frac{b}{cosB}=\frac{c}{cosC}$,
则由正弦定理得,$\frac{sinA}{cosA}=\frac{sinB}{cosB}=\frac{sinC}{cosC}$,
∴sinAcosB=cosAsinB,则sin(A-B)=0,
∵A、B∈(0,π),∴A-B∈(-π,π),
则A-B=0,即A=B,同理可证B=C,
所以A=B=C,则△ABC是等边三角形,
故选:A.

点评 本题考查了正弦定理的灵活应用,注意三角形内角的范围,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网