题目内容
已知数列{an}的通项公式是an=
sin(
+
).设其前n项和为Sn,则S12=______.
2 |
nπ |
2 |
π |
4 |
∵an=
sin(
+
).
∴对应的数列的周期T=
=4,即数列{an}是周期为4的周期数列,
∴S12=3S4,
∵an=
sin(
+
),
∴a1=
sin?(
+
)=
cos?
,a2=
sin?(π+
)=-
sin?
,a3=
sin?(
+
)=-
cos?
,a4=
sin?(2π+
)=
sin?
,
∴S4=0,
即S12=3S4=0,
故答案为:0.
2 |
nπ |
2 |
π |
4 |
∴对应的数列的周期T=
2π | ||
|
∴S12=3S4,
∵an=
2 |
nπ |
2 |
π |
4 |
∴a1=
2 |
π |
2 |
π |
4 |
2 |
π |
4 |
2 |
π |
4 |
2 |
π |
4 |
2 |
3π |
2 |
π |
4 |
2 |
π |
4 |
2 |
π |
4 |
2 |
π |
4 |
∴S4=0,
即S12=3S4=0,
故答案为:0.
练习册系列答案
相关题目