题目内容
已知定义在R上的函数f(x)满足
,若方程f(x)-ax=0有5个实根,则正实数a的取值范围是( )
|
A.
| B.
| C.16-6
| D.
|
由题意可得函数f(x)是以4为周期的周期函数,做出
函数y=f(x)与函数y=ax的图象,
由图象可得方程y=-(x-4)2+1=ax 即 x2+(a-8)x+15=0
在(3,5)上有2个实数根,
由
解得 0<a<8-2
.
再由方程f(x)=ax 在(5,6)内无解可得6a>1,a>
.
综上可得
<a<8-2
,
故选 D.
函数y=f(x)与函数y=ax的图象,
由图象可得方程y=-(x-4)2+1=ax 即 x2+(a-8)x+15=0
在(3,5)上有2个实数根,
由
|
15 |
再由方程f(x)=ax 在(5,6)内无解可得6a>1,a>
1 |
6 |
综上可得
1 |
6 |
15 |
故选 D.
练习册系列答案
相关题目