题目内容
【题目】如图(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=8,AD=CD=4,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图(b)所示.
(1)求证:BC⊥平面ACD;
(2)求几何体D﹣ABC的体积.
【答案】
(1)证明:在图中,可得AC=BC=4 ,从而AC2+BC2=AB2,
故AC⊥BC,又平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC平面ABC,
∴BC⊥平面ACD
(2)解:由(1)可知,BC为三棱锥B﹣ACD的高,BC=4 ,S△ACD=8,
∴VB﹣ACD= S△ACDBC= ×8×4 = ,
由等体积性可知,几何体D﹣ABC的体积为
【解析】(1)证明AC⊥BC,利用平面与平面垂直的性质定理,证明BC⊥平面ACD.(2)由(1)可知,BC为三棱锥B﹣ACD的高,求出BC,S△ACD , 即可求解VB﹣ACD , 由等体积性可知,求解几何体D﹣ABC的体积.
练习册系列答案
相关题目