题目内容
已知函数f(x)= x/4+ln(x-2)/(x-4),(1)求函数f)x)的定义域和极值;(2)若函数(fx)在区间[a2-5a,8-3a]上为增函数,求实数a的取值范围;(3)函数f(x)的图象是否为中心对称图形?若是请指出对称中心,并证明;若不是,请说明理由.
解:
(1);
(2)或;
(3)中心对称图形,对称中心是(3, 3/4).
(1);
(2)或;
(3)中心对称图形,对称中心是(3, 3/4).
求函数f)x)的定义域 (x-2)/(x-4),求极值时,令导数为0,,得出x;若函数(fx)在区间[a2-5a,8-3a]上为增函数,则导函数在[a2-5a,8-3a]恒非负;根据函数图像,若有对称中心,则是中心一定在两极值点的中心(3, 3/4),证明时,只需证明点均在函数图像上。
(1)函数的定义域为(-∞,2)∪(4,+∞),由得:x=0或x=6,所以
(-∞,0) | 0 | (0,2) | (4,6) | 6 | (6,+∞) | |
+ | 0 | - | - | 0 | + | |
↗ | 极大值 | ↘ | ↘ | 极小值 | ↗ |
(2)由⑴知或所以或
(3)由⑴知函数的图象若是中心对称图形,则中心一定在两极值点的中心(3, 3/4),下面证明:
设是函数的图象上的任意一点,则是它关于(3, 3/4)的对称点,而,即也在函数的图象上.所以函数的图象是中心对称图形,其中心是(3, 3/4)
练习册系列答案
相关题目