题目内容
11.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上一点P到左焦点的距离为6,则点P到右焦点的距离是( )A. | 2 | B. | 4 | C. | 6 | D. | 8 |
分析 由椭圆的定义可得:点P到右焦点的距离为10-6=4.
解答 解:因为椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的a=5,
所以由椭圆的定义可得:点P到左焦点的距离和右焦点的距离的和为2a=10,
即有点P到右焦点的距离为10-6=4.
故选B.
点评 本题考查椭圆的定义和方程,主要考查椭圆的定义.属于基础题.
练习册系列答案
相关题目
15.某射手平时射击成绩统计如表:
已知他射中7环及7环以下的概率为0.29.
(1)求a和b的值;
(2)求命中10环或9环的概率;
(3)求命中环数不足9环的概率.
环数 | 7环以下 | 7 | 8 | 9 | 10 |
概率 | 0.13 | a | b | 0.25 | 0.24 |
(1)求a和b的值;
(2)求命中10环或9环的概率;
(3)求命中环数不足9环的概率.
3.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点与抛物线y2=8x的焦点相同,离心率为$\frac{1}{2}$,则此椭圆的方程为( )
A. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1 | C. | $\frac{{x}^{2}}{48}$+$\frac{{y}^{2}}{64}$=1 | D. | $\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1 |
20.已知f(x)=$\frac{lnx}{x}$,则( )
A. | x=e是f(x)的极大值点 | B. | x=e时f(x)的极小值点 | ||
C. | x=1是f(x)的极大值点 | D. | x=1是f(x)的极小值点 |