题目内容
直三棱柱ABC-A1B1C1中,∠ACB=120°,AC=CB=A1A=1,D1是A1B1上一动点(可以与A1或B1重合),过D1和C1C的平面与AB交于D.
(Ⅰ)证明BC∥平面AB1C1;
(Ⅱ)若D1为A1B1的中点,求三棱锥B1-C1AD1的体积VB1-C1AD1.
(Ⅰ)证明BC∥平面AB1C1;
(Ⅱ)若D1为A1B1的中点,求三棱锥B1-C1AD1的体积VB1-C1AD1.
(Ⅰ)证明:∵直三棱柱ABC-A1B1C1中,∠ACB=120°,
AC=CB=A1A=1,
∴CB∥C1B1,
又C1B1?平面AB1C1,
CB?平面AB1C1,
所以CB∥平面AB1C1.
(Ⅱ)直三棱柱ABC-A1B1C1中,
∵D1为A1B1的中点,AC=CB=A1A=1,
∴C1D1⊥A1B1,CC1⊥A1B1,
∴A1B1⊥平面CDD1C1,
∵C1D?平面CDD1C1,∴C1D⊥A1B1.
∵∠ACB=120°,AC=CB=A1A=1,
∴D1B1=
A1B1=
=
,
C1D1=
C1B1=
,
∴VE1-C1AD1=VC1-D1AB1
=
×C1D1×(
×A1A×D1B1)
=
×
×(
×1×
)=
.
故三棱锥B1-C1AD1的体积为
.
AC=CB=A1A=1,
∴CB∥C1B1,
又C1B1?平面AB1C1,
CB?平面AB1C1,
所以CB∥平面AB1C1.
(Ⅱ)直三棱柱ABC-A1B1C1中,
∵D1为A1B1的中点,AC=CB=A1A=1,
∴C1D1⊥A1B1,CC1⊥A1B1,
∴A1B1⊥平面CDD1C1,
∵C1D?平面CDD1C1,∴C1D⊥A1B1.
∵∠ACB=120°,AC=CB=A1A=1,
∴D1B1=
1 |
2 |
1 |
2 |
1+1-2×1×1×cos120° |
| ||
2 |
C1D1=
1 |
2 |
1 |
2 |
∴VE1-C1AD1=VC1-D1AB1
=
1 |
3 |
1 |
2 |
=
1 |
3 |
1 |
2 |
1 |
2 |
| ||
2 |
| ||
24 |
故三棱锥B1-C1AD1的体积为
| ||
24 |
练习册系列答案
相关题目