ÌâÄ¿ÄÚÈÝ
11£®¸ø³öÏÂÁÐËĸö½áÂÛ£¬ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©A£® | Èô$\frac{1}{a}£¾\frac{1}{b}$£¬Ôòa£¼b | |
B£® | ¡°a=3¡°ÊÇ¡°Ö±Ïßl1£ºa2x+3y-1=0ÓëÖ±Ïßl2£ºx-3y+2=0´¹Ö±¡±µÄ³äÒªÌõ¼þ | |
C£® | ÔÚÇø¼ä[0£¬1]ÉÏËæ»úÈ¡Ò»¸öÊýx£¬sin$\frac{¦Ð}{2}x$µÄÖµ½éÓÚ0µ½$\frac{1}{2}$Ö®¼äµÄ¸ÅÂÊÊÇ$\frac{1}{3}$ | |
D£® | ¶ÔÓÚÃüÌâP£º?x¡ÊRʹµÃx2+x+1£¼0£¬Ôò?P£º?x¡ÊR¾ùÓÐx2+x+1£¾0 |
·ÖÎö ´ËÌâ¿ÉÒÔÓÃÅųý·¨£¬Åųý³£×öÌâÐÍA£¬B£¬D£¬´Ó¶øÈ·¶¨´ð°¸C
½â´ð ½â£ºA£º³ÉÁ¢µÄÌõ¼þÊÇab£¾0
B£º³äÒªÌõ¼þÊÇ-$\frac{{a}^{2}}{3}$•$\frac{1}{3}$=-1£¬µÃa=¡À3
D£º?P£º?x¡ÊR¾ùÓÐx2+x+1¡Ý0
C£ºx¡Ê[0£¬1]£¬Ôò$\frac{¦Ð}{2}x$¡Ê[0£¬$\frac{¦Ð}{2}$]£¬P£¨sin$\frac{¦Ð}{2}x$µÄÖµ½éÓÚ0µ½$\frac{1}{2}$Ö®¼ä£©=$\frac{¦Ð}{6}$$¡Â\frac{¦Ð}{2}$=$\frac{1}{3}$
¹ÊÑ¡£ºC
µãÆÀ ´ËÌâ¿Éͨ¹ý»á×öÌ⣬ͨ¹ýÅųý·¨È·¶¨´ð°¸£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
19£®ÏÂÁÐ˵·¨ÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£® | ÃüÌâ¡°$a£¾b\;£¬\;Ôò\frac{1}{a}£¼\frac{1}{b}$¡±µÄÄæÃüÌâÊÇÕæÃüÌâ | |
B£® | ¶ÔÓÚº¯Êýy=f£¨x£©£¬x¡ÊR¡°y=|f£¨x£©|µÄͼÏó¹ØÓÚyÖá¶Ô³Æ¡±ÊÇ¡°y=f£¨x£©ÊÇÆ溯Êý¡±µÄ³äÒªÌõ¼þ | |
C£® | ÏßÐԻع鷽³Ì$\widehaty=\widehatbx+\widehata$¶ÔÓ¦µÄÖ±ÏßÒ»¶¨¾¹ýÆäÑù±¾Êý¾Ýµã£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡£¬£¨xn£¬yn£©ÖеÄÒ»¸öµã | |
D£® | ÃüÌâ¡°$?{x_0}¡ÊR\;£¬\;x_0^2-{x_0}£¾0$¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2-x¡Ü0¡± |
3£®ÏÂÁÐÓï¾äÊÇÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£® | ËùÓеÄʵÊýx¶¼ÄÜʹx+$\frac{1}{x}$¡Ý2³ÉÁ¢ | |
B£® | ´æÔÚÒ»¸öʵÊýxʹ²»µÈʽx2-2x+3£¼0³ÉÁ¢ | |
C£® | Èç¹ûx¡¢y ÊÇʵÊý£¬ÄÇô¡°xy£¾0¡±ÊÇ¡°|x+y|=|x|+|y|¡±µÄ³ä·Öµ«²»±ØÒªÌõ¼þ | |
D£® | ÃüÌâ¼×£º¡°a¡¢b¡¢c¡±³ÉµÈ²îÊýÁС±ÊÇÃüÌâÒÒ£º¡°$\frac{a}{b}+\frac{c}{b}$=2¡±µÄ³äÒªÌõ¼þ |