题目内容
【题目】某车间在两天内,每天生产10件某产品,其中第一天第二天分别生产了1件2件次品,而质检部每天要在生产的10件产品中随意抽取4件进行检查,若发现有次品,则当天的产品不能通过.
(1)求两天全部通过检查的概率;
(2)若厂内对该车间生产的产品质量采用奖惩制度,两天全不通过检查罚300元,通过1天,2天分别奖300元900元.那么该车间在这两天内得到奖金的数学期望是多少元?
【答案】(1).(2)(元)
【解析】
(1)由题意分别可得第一二天通过检查的概率,由独立事件的概率公式可得;
(2)记所得奖金为ξ元,则ξ的取值为﹣300,300,900,分别求其概率可得数学期望.
(1)随意抽取4件产品进行检查是随机事件,而第一天有9件正品,第二天有8件正品,
第一天通过检查的概率为.
第二天通过检查的概率为.
因为第一天第二天检查是否通过是相互独立的,
所以两天全部通过检查的概率为.
(2)记所得奖金为ξ元,则ξ的取值为﹣300,300,900 ,
由题意可得;
.
故(元).
【题目】科学研究表明:人类对声音有不的感觉,这与声音的强度单位:瓦平方米有关在实际测量时,常用单位:分贝来表示声音强弱的等级,它与声音的强度I满足关系式:是常数,其中瓦平方米如风吹落叶沙沙声的强度瓦平方米,它的强弱等级分贝.
已知生活中几种声音的强度如表:
声音来源
声音大小 | 风吹落叶沙沙声 | 轻声耳语 | 很嘈杂的马路 |
强度瓦平方米 | |||
强弱等级分贝 | 10 | m | 90 |
求a和m的值
为了不影响正常的休息和睡眠,声音的强弱等级一般不能超过50分贝,求此时声音强度I的最大值.
【题目】一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
转速x(转/秒) | 2 | 4 | 5 | 6 | 8 |
每小时生产有缺点的零件数y(件) | 30 | 40 | 60 | 50 | 70 |
(1)画散点图;
(2)如果y对x有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:)
【题目】某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:
每月完成合格产品的件数(单位:百件) | |||||
频数 | 10 | 45 | 35 | 6 | 4 |
男员工人数 | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格产品的件数不少于3200件的员工被评为“生产能手”.由以上统计数据填写下面列联表,并判断是否有95%的把握认为“生产能手”与性别有关?
非“生产能手” | “生产能手” | 合计 | |
男员工 | |||
女员工 | |||
合计 |
(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的,计件单价为1元;超出件的部分,累进计件单价为1.2元;超出件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段中各段的频率视为相应的概率,在该厂男员工中选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3100元的人数为,求的分布列和数学期望.
附:,
.