题目内容
【题目】已知函数的定义域为区间,若对于内任意,都有成立,则称函数是区间的“函数”.
(1)判断函数()是否是“函数”?说明理由;
(2)已知,求证:函数()是“函数”;
(3)设函数是,()上的“函数”,,且存在使得,试探讨函数在区间上零点个数,并用图象作出简要的说明(结果不需要证明).
【答案】(1)是,理由见解析;(2)证明见解析;(3)0、1或2个,图象见解析.
【解析】
(1)由题意直接判断即可; (2)由题意直接判断即可; (3)举例即可得出结论.
(1)是,理由如下:
任取,且,
则成立,
故函数是“函数”.
(2)证明:事实上,任取,且,
则成立,即得证;
(3)函数在上的零点个数可以为0、1或2个.
例如,是函数,如图,
其零点个数为0;
是函数,如图,
其零点个数为1;
是函数,如图,
其零点个数为2;
函数不可能有个零点,假设均是零点,且,
则由可知,势必上恒大于,从而导致矛盾.
练习册系列答案
相关题目