ÌâÄ¿ÄÚÈÝ

Èçͼ£¬ÉèÅ×ÎïÏßc1£ºy2=4mx£¨m£¾0£©µÄ×¼ÏßÓëxÖá½»ÓÚF1£¬½¹µãΪF2£¬ÒÔF1¡¢F2Ϊ½¹µã£¬ÀëÐÄÂÊe=
1
2
µÄÍÖÔ²c2ÓëÅ×ÎïÏßc1ÔÚxÖáÉÏ·½µÄÒ»¸ö½»µãΪP£®
£¨1£©µ±m=1ʱ£¬ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö±Ïßl¾­¹ýÍÖÔ²c2µÄÓÒ½¹µãF2£¬ÓëÅ×ÎïÏßc1½»ÓÚA1¡¢A2£¬Èç¹ûÒÔÏ߶ÎA1A2Ϊֱ¾¶×÷Ô²£¬ÊÔÅжϵãPÓëÔ²µÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃ¡÷PF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£¬Èô´æÔÚ£¬Çó³öÕâÑùµÄʵÊým£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¡ßc1£ºy2=4mxµÄÓÒ½¹µãF2£¨m£¬0£©
¡àÍÖÔ²µÄ°ë½¹¾àc=m£¬ÓÖe=
1
2
£¬
¡àÍÖÔ²µÄ³¤°ëÖáµÄ³¤a=2m£¬¶Ì°ëÖáµÄ³¤b=
3
m
£®
ÍÖÔ²·½³ÌΪ
x2
4m2
+
y2
3m2
=1
£®
£¨1£©µ±m=1ʱ£¬¹ÊÍÖÔ²·½³ÌΪ
x2
4
+
y2
3
=1
£¬£¨3·Ö£©
£¨2£©ÒÀÌâÒâÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky+1£¬k¡ÊR
ÁªÁ¢
y2=4x
x2
4
+
y2
3
=1
µÃµãPµÄ×ø±êΪP(
2
3
£¬
2
6
3
)
£®
½«x=ky+1´úÈëy2=4xµÃy2-4ky-4=0£®
ÉèA1£¨x1£¬y1£©¡¢A2£¨x2£¬y2£©£¬ÓÉΤ´ï¶¨ÀíµÃy1+y2=4k£¬y1y2=-4£®
ÓÖ
PA1
=(x1-
2
3
£¬y1-
2
6
3
)
£¬
PA2
=(x2-
2
3
£¬y2-
2
6
3
)
£®
PA1
PA2
=x1x2-
2
3
(x1+x2)+
4
9
+y1y2-
2
6
3
(y1+y2)+
24
9

=-
24k2+24
6
k+11
9

=-
24(k+
6
2
)
2
-25
9
£®
¡ßk¡ÊR£¬ÓÚÊÇ
PA1
PA2
µÄÖµ¿ÉÄÜСÓÚÁ㣬µÈÓÚÁ㣬´óÓÚÁ㣮
¼´µãP¿ÉÔÚÔ²ÄÚ£¬Ô²ÉÏ»òÔ²Í⣮£¨8·Ö£©
£¨3£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄʵÊým£¬
ÓÉ
y2=4mx
x2
4m2
+
y2
3m2
=1
½âµÃ£ºP(
2
3
m£¬
2
6
3
m)
£®
¡à|PF2|=
2
3
m+m=
5
3
m
£¬|PF1|=4m-|PF2|=
7
3
m
£¬ÓÖ|F1F2|=2m=
6
3
m
£®
¼´¡÷PF1F2µÄ±ß³¤·Ö±ðÊÇ
5
3
m
¡¢
6
3
m
¡¢
7
3
m
£®
¡àm=3ʱ£¬ÄÜʹ¡÷PF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£®£¨14·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø