ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÉèÅ×ÎïÏßc1£ºy2=4mx£¨m£¾0£©µÄ×¼ÏßÓëxÖá½»ÓÚF1£¬½¹µãΪF2£¬ÒÔF1¡¢F2Ϊ½¹µã£¬ÀëÐÄÂÊe=
µÄÍÖÔ²c2ÓëÅ×ÎïÏßc1ÔÚxÖáÉÏ·½µÄÒ»¸ö½»µãΪP£®
£¨1£©µ±m=1ʱ£¬ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö±Ïßl¾¹ýÍÖÔ²c2µÄÓÒ½¹µãF2£¬ÓëÅ×ÎïÏßc1½»ÓÚA1¡¢A2£¬Èç¹ûÒÔÏ߶ÎA1A2Ϊֱ¾¶×÷Ô²£¬ÊÔÅжϵãPÓëÔ²µÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃ¡÷PF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£¬Èô´æÔÚ£¬Çó³öÕâÑùµÄʵÊým£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
1 |
2 |
£¨1£©µ±m=1ʱ£¬ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö±Ïßl¾¹ýÍÖÔ²c2µÄÓÒ½¹µãF2£¬ÓëÅ×ÎïÏßc1½»ÓÚA1¡¢A2£¬Èç¹ûÒÔÏ߶ÎA1A2Ϊֱ¾¶×÷Ô²£¬ÊÔÅжϵãPÓëÔ²µÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃ¡÷PF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£¬Èô´æÔÚ£¬Çó³öÕâÑùµÄʵÊým£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¡ßc1£ºy2=4mxµÄÓÒ½¹µãF2£¨m£¬0£©
¡àÍÖÔ²µÄ°ë½¹¾àc=m£¬ÓÖe=
£¬
¡àÍÖÔ²µÄ³¤°ëÖáµÄ³¤a=2m£¬¶Ì°ëÖáµÄ³¤b=
m£®
ÍÖÔ²·½³ÌΪ
+
=1£®
£¨1£©µ±m=1ʱ£¬¹ÊÍÖÔ²·½³ÌΪ
+
=1£¬£¨3·Ö£©
£¨2£©ÒÀÌâÒâÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky+1£¬k¡ÊR
ÁªÁ¢
µÃµãPµÄ×ø±êΪP(
£¬
)£®
½«x=ky+1´úÈëy2=4xµÃy2-4ky-4=0£®
ÉèA1£¨x1£¬y1£©¡¢A2£¨x2£¬y2£©£¬ÓÉΤ´ï¶¨ÀíµÃy1+y2=4k£¬y1y2=-4£®
ÓÖ
=(x1-
£¬y1-
)£¬
=(x2-
£¬y2-
)£®
•
=x1x2-
(x1+x2)+
+y1y2-
(y1+y2)+
=-
=-
£®
¡ßk¡ÊR£¬ÓÚÊÇ
•
µÄÖµ¿ÉÄÜСÓÚÁ㣬µÈÓÚÁ㣬´óÓÚÁ㣮
¼´µãP¿ÉÔÚÔ²ÄÚ£¬Ô²ÉÏ»òÔ²Í⣮£¨8·Ö£©
£¨3£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄʵÊým£¬
ÓÉ
½âµÃ£ºP(
m£¬
m)£®
¡à|PF2|=
m+m=
m£¬|PF1|=4m-|PF2|=
m£¬ÓÖ|F1F2|=2m=
m£®
¼´¡÷PF1F2µÄ±ß³¤·Ö±ðÊÇ
m¡¢
m¡¢
m£®
¡àm=3ʱ£¬ÄÜʹ¡÷PF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£®£¨14·Ö£©
¡àÍÖÔ²µÄ°ë½¹¾àc=m£¬ÓÖe=
1 |
2 |
¡àÍÖÔ²µÄ³¤°ëÖáµÄ³¤a=2m£¬¶Ì°ëÖáµÄ³¤b=
3 |
ÍÖÔ²·½³ÌΪ
x2 |
4m2 |
y2 |
3m2 |
£¨1£©µ±m=1ʱ£¬¹ÊÍÖÔ²·½³ÌΪ
x2 |
4 |
y2 |
3 |
£¨2£©ÒÀÌâÒâÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky+1£¬k¡ÊR
ÁªÁ¢
|
2 |
3 |
2
| ||
3 |
½«x=ky+1´úÈëy2=4xµÃy2-4ky-4=0£®
ÉèA1£¨x1£¬y1£©¡¢A2£¨x2£¬y2£©£¬ÓÉΤ´ï¶¨ÀíµÃy1+y2=4k£¬y1y2=-4£®
ÓÖ
PA1 |
2 |
3 |
2
| ||
3 |
PA2 |
2 |
3 |
2
| ||
3 |
PA1 |
PA2 |
2 |
3 |
4 |
9 |
2
| ||
3 |
24 |
9 |
=-
24k2+24
| ||
9 |
=-
24(k+
| ||||
9 |
¡ßk¡ÊR£¬ÓÚÊÇ
PA1 |
PA2 |
¼´µãP¿ÉÔÚÔ²ÄÚ£¬Ô²ÉÏ»òÔ²Í⣮£¨8·Ö£©
£¨3£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄʵÊým£¬
ÓÉ
|
2 |
3 |
2
| ||
3 |
¡à|PF2|=
2 |
3 |
5 |
3 |
7 |
3 |
6 |
3 |
¼´¡÷PF1F2µÄ±ß³¤·Ö±ðÊÇ
5 |
3 |
6 |
3 |
7 |
3 |
¡àm=3ʱ£¬ÄÜʹ¡÷PF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£®£¨14·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿