题目内容
如图,直三棱柱ABC-A1B1C1中,AB=AC=
AA1,∠BAC=90°,D为棱BB1的中点
(Ⅰ)求异面直线C1D与A1C所成的角;
(Ⅱ)求证:平面A1DC⊥平面ADC.
1 |
2 |
(Ⅰ)求异面直线C1D与A1C所成的角;
(Ⅱ)求证:平面A1DC⊥平面ADC.
解法一:(Ⅰ)建立如图所示的空间直角坐标系设AB=a,
则A1(0,0,2a),C(0,a,0),C1(0,a,2a),D(a,0,a)(2分)
于是
=(a,-a,-a),
=(0,a,-2a)
∵cos<
,
>=
=
=
,(6分)
∴异面直线C1D与A1C所成的角为arccos
(7分)
(Ⅱ)∵
=(a,0,-a),
=(0,a,0),
∴
•
=a2+0-a2=0,
•
=0(10分)
则
⊥
,
⊥
∴A1D⊥平面ACD(12分)
又A1D?平面A1CD,
∴平面A1DC⊥平面ADC(14分)
解法二:
(Ⅰ)连接AC1交A1C于点E,取AD中点F,连接EF,则EF∥C1D
∴直线EF与A1C所成的角就是异面直线C1D与A1C所成的角(2分)
设AB=a,
则C1D=
=
a,
A1C=
=
a,AD=
=
a.
△CEF中,CE=
A1C=
a,EF=
C1D=
a,
直三棱柱中,∠BAC=90°,则AD⊥AC(4分)
CF=
=
=
a(4分)
∵cos∠CEF=
=
=
,(6分)
∴异面直线C1D与A1C所成的角为arccos
(7分)
(Ⅱ)直三棱柱中,∠BAC=90°,∴AC⊥平面ABB1A1,则AC⊥A1D(9分)
又AD=
a,A1D=
a,AA1=2a,
则AD2+A1D2=AA12,于是AD⊥A1D(12分)
∴A1D⊥平面ACD又A1D?平面A1CD,
∴平面A1DC⊥平面ADC(14分)
则A1(0,0,2a),C(0,a,0),C1(0,a,2a),D(a,0,a)(2分)
于是
C1D |
A1C |
∵cos<
C1D |
A1C |
| ||||
|
|
0-a2+2a2 | ||||
|
| ||
15 |
∴异面直线C1D与A1C所成的角为arccos
| ||
15 |
(Ⅱ)∵
A1D |
AC |
∴
A1D |
AD |
A1D |
AC |
则
A1D |
AD |
A1D |
AC |
∴A1D⊥平面ACD(12分)
又A1D?平面A1CD,
∴平面A1DC⊥平面ADC(14分)
解法二:
(Ⅰ)连接AC1交A1C于点E,取AD中点F,连接EF,则EF∥C1D
∴直线EF与A1C所成的角就是异面直线C1D与A1C所成的角(2分)
设AB=a,
则C1D=
C1B12+B1D2 |
3 |
A1C=
AC2+AA12 |
5 |
AB2+BD2 |
2 |
△CEF中,CE=
1 |
2 |
| ||
2 |
1 |
2 |
| ||
2 |
直三棱柱中,∠BAC=90°,则AD⊥AC(4分)
CF=
AC2+AF2 |
a2+(
|
| ||
2 |
∵cos∠CEF=
CE2+EF2-CF2 |
2CE•EF |
| ||||||||
2•
|
| ||
15 |
∴异面直线C1D与A1C所成的角为arccos
| ||
15 |
(Ⅱ)直三棱柱中,∠BAC=90°,∴AC⊥平面ABB1A1,则AC⊥A1D(9分)
又AD=
2 |
2 |
则AD2+A1D2=AA12,于是AD⊥A1D(12分)
∴A1D⊥平面ACD又A1D?平面A1CD,
∴平面A1DC⊥平面ADC(14分)
练习册系列答案
相关题目