题目内容
若a,b为非零向量且a∥b,
1,
2∈R,且
1
2≠0.
求证:
1a+
2b与
1a-
2b为共线向量.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
证明见解析
证明 设a=(x1,y1),b=(x2,y2).
∵a∥b,b≠0,a≠0,∴存在实数m,使得a=mb,
即a=(x1,y1)=(mx2,my2),
∴
1a+
2b=((m
1+
2)x2,(m
1+
2)y2)
=(m
1+
2)(x2,y2)
同理
1a-
2b=(m
1-
2)(x2,y2),
∴(
1a+
2b)∥(
1a-
2b)∥b,
而b≠0,∴(
1a+
2b)∥(
1a-
2b).
∵a∥b,b≠0,a≠0,∴存在实数m,使得a=mb,
即a=(x1,y1)=(mx2,my2),
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
=(m
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
同理
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
∴(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
而b≠0,∴(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125854757181.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目