题目内容
如图所示,在△ABC中,D、F分别是BC、AC的中点,
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125847908211.gif)
,
=a,
=b.
(1)用a、b表示向量
、
、
、
、
;
(2)求证:B、E、F三点共线.![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231258481272098.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125847659218.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125847908211.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848002224.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848002221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848017220.gif)
(1)用a、b表示向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848002224.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125847659218.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848064213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848080222.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848095218.gif)
(2)求证:B、E、F三点共线.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231258481272098.gif)
(1)
=
(a+b),
=
(a+b).
=
b,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231258482832684.jpg)
=
(b-2a).
=
-
=
(b-2a).
(2)证明见解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848002224.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848158206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125847659218.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848205204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848064213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848158206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231258482832684.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848080222.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848205204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848095218.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848064213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848002221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848158206.gif)
(2)证明见解析
(1)解 延长
到G,使
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848158206.gif)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231258484542690.jpg)
连接BG、CG,得到平行四边形ABGC,
所以
=a+b,
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848158206.gif)
=
(a+b),
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125847908211.gif)
=
(a+b).
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848158206.gif)
=
b,
=
-
=
(a+b)-a=
(b-2a).
=
-
=
b-a=
(b-2a).
(2)证明 由(1)可知
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125847908211.gif)
,所以B、E、F三点共线.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848392217.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848002224.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848158206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848439231.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231258484542690.jpg)
连接BG、CG,得到平行四边形ABGC,
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848439231.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848002224.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848158206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848439231.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848158206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125847659218.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125847908211.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848002224.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848205204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848064213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848158206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848017220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848158206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848080222.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125847659218.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848002221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848205204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848205204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848095218.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848064213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848002221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848158206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848158206.gif)
(2)证明 由(1)可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848080222.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125847908211.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125848860219.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目