题目内容
【题目】已知椭圆和直线: ,椭圆的离心率,坐标原点到直线的距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知定点,若直线过点且与椭圆相交于两点,试判断是否存在直线,使以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.
【答案】(I);(II)或.
【解析】试题分析:(Ⅰ)根据椭圆中的 ,以及 ,和点到直线的距离公式计算求得 ;(Ⅱ)分斜率不存在和斜率存在两种情况讨论,当斜率存在时,设直线为 与椭圆方程联立,利用根与系数的关系计算 ,从而求得斜率 和直线方程.
试题解析:(Ⅰ)由直线,∴,即——①
又由,得,即,又∵,∴——②
将②代入①得,即,∴, , ,
∴所求椭圆方程是;
(Ⅱ)①当直线的斜率不存在时,直线方程为,
则直线与椭圆的交点为,又∵,
∴,即以为直径的圆过点;
②当直线的斜率存在时,设直线方程为, , ,
由,得,
由,得或,
∴, ,
∴
∵以为直径的圆过点,∴,即,
由, ,
得,∴,
∴,解得,即;
综上所述,当以为直径的圆过定点时,直线的方程为或.
练习册系列答案
相关题目