题目内容

已知函数(x∈R)在区间[-1,1]上是增函数
(Ⅰ)求实数a的值所组成的集合A
(Ⅱ)设关于x的方程的两实数根为x1、x2.
试问:是否存在实数m,使得不等式对任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在,请说明理由?

(Ⅰ)      2分
因为函数f(x)在区间[-1,1]上是增函数,所以f(x)≥0在区间x∈[-1,1]恒成立
即有x2-ax-2≤0在区间[-1,1]上恒成立。   构造函数g(x)=x2-ax-2
∴满足题意的充要条件是:
所以所求的集合A[-1,1]            (7分)
(Ⅱ)由题意得:得到:x2-ax-2=0         (8分)
因为△=a2+8>0 所以方程恒有两个不等的根为x1、x2由根与系数的关系有:         (9分)
因为a∈A即a∈[-1,1],所以要使不等式对任意a∈A及t∈[-1,1]恒成立,当且仅当对任意的t∈[-1,1]恒成立           (11分)
构造函数φ(x)=m2+tm-2=mt+(m2-2) ≥0对任意的t∈[-1,1]恒成立的充要条件是
m≥2或m≤-2.故存在实数m满足题意且为
{m| m≥2或m≤-2}为所求    (14分)
同答案
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网