题目内容

如图,在四棱锥中,底面是正方                            形,侧棱底面,点的中点,作于点

(1)求证:∥平面
(2)求证:平面
方法一:

(1)两两垂直,以O为原点,射线为非负轴,建立空间直角坐标系
,      
                2分
可求得平面的法向量为                         
平面                             
∥平面                                           4分
(2) 
  又    
平面                                            6分
解:方法二:

(1)      连接BE,BD,AC,设AC交BD于G,
则G为AC的中点                            
中,E为PC的中点,
则PA∥EG,面BED,面BED
所以∥平面                           3分
(2)PD⊥面ABCD
PD⊥BC
 BC⊥CD

 BC⊥面PCD
面PCD
 BC⊥DE
PD=CD,E为PC中点,DE⊥PC
 DE⊥面PBC    DE⊥PB,又因为PB⊥EF
平面                          6分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网