题目内容

【题目】设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2﹣x,则 =(
A.
B.
C.
D.

【答案】C
【解析】解:根据题意,f(x)是定义在R上周期为2的奇函数,则 =﹣f( )=﹣f( ),

又由当0≤x≤1时,f(x)=x2﹣x,

则f( )=( 2﹣( )=﹣

=

故选:C.

【考点精析】解答此题的关键在于理解函数的概念及其构成要素的相关知识,掌握函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数,以及对函数奇偶性的性质的理解,了解在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网